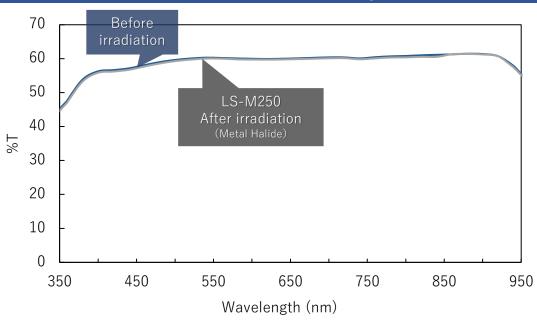

UV

ST365-35 multi-component glass fibers can be used at 365 nm and above (UVA-Vis). Compared to typical silica fibers, ST356-35 fibers are thin and highly flexible, allowing the fiber bundles to be assembled in complex shapes and randomized. The ST365-35 boasts high NA, enabling efficient light collection.

RoHS compliant. Free of harmful substances like lead and arsenic. Suitable for medical application.

Technical Data		
Fiber Type	A multimode/step index optical fiber	
Numerical Aperture	0.32	@587nm
Opening angle	38° (@587nm
Optical Attenuation * Reference value	1.00 dB/m @365nm	
Heat Resistance	< 200 °C	
Single Fiber Diameter	30 μm, 50 μm ±3 μm	
Chemical Resistance	Core Glass	Cladding Glass
Acid Resistance	4 *	2 *
Water Resistance	3 *	2 *

* Class according to JOGIS (Japanese Optical Glass Industrial Standard)



Light guide bundle with 5 mm diameter (Single fiber diameter: 50 μ m)

new glass & fiber optics


Solarization Stability

Measurement conditions

A light guide bundle with 5 mm diameter of 1 m length is exposed to Metal Halide Lamp (400 nm Cut Longpass Filter) for 100 hours.

Note: ST365-35 fibers may exhibit solarization depending on the wavelength and intensity of a light source, the operating temperature, etc.

Measurement conditions

The opening angle varies with wavelength, depending on the wavelength dispersion of the core and cladding glass materials. In the plot above, the opening angle calculated from the refractive indices of the core and cladding glass materials is plotted for each wavelength.

4-7-25 Harigaya, Urawa-ku, Saitama-City, Saitama 330-8565 Japan TEL:+81-48-832-3165