

抗菌玻璃陶瓷(LATP-Ag)

抗菌玻璃陶瓷(LATP)作为支撑体,采用锂铝硅系玻璃陶瓷晶化的新技术,是一种由银离子担任主要抗菌力量的无机抗菌剂。晶化玻璃是由特殊成分组成的玻璃进行热加工,巧秒利用玻璃的相分离而形成。强度、耐热性能、耐磨性能等机械性能方面,即便在多种多样的陶瓷制品中也具有显著的特徵。其中,采用本抗菌剂的锂系晶化玻璃由于经过了酸处理,有连续的尖锐细孔,是一种在PH抗性和稳定性以及高性能离子交换方面非常优越的陶瓷材料。抗菌玻璃陶瓷 [LATP] 是锂系晶化玻璃具备的优越性能进行应用而得到的产物。在银离子的高保力、效果持续性、耐光性方面也表现优秀,是一种非常见效的抗菌剂。本抗菌剂适合各种加工,被广泛应用于各种抗菌用品。

◆ 特点

优越的抗菌性能: 由于银的作用,本产品可以发挥高抗菌力

高耐热性: 1000℃的高温下也表现稳定。(一般为800℃)而且,对抗菌功能也没有影响

优越的pH抗:有很强的抗酸/碱作用

强银离子维持能力: 拥有超强的离子交换能力,即使在各种化学液体里浸泡也不会造成银子的流出 优越的抗光性能: 长时间的照射也可以保持明显的白色,经过变色的测试没有检测出颜色的等级变化。

高安全性: 经过各种测试,结果显示在安全性上没有任何问题。 高稳定性: 即使在高湿度条件下,也完全不吸收水份维持稳定。

◆ 应用实例

• 抗菌用品

• 水溶液的抗菌处理

◆ 提供形態

• LATP-Ag粉末 (粒径~10μm)

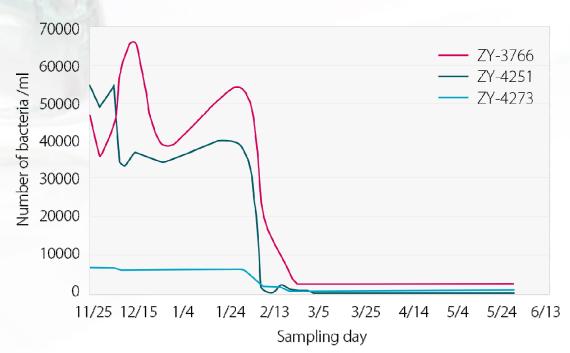
• 柱式抗菌块 (直径19mm,高度19mm)

◆ 最小抑菌浓度(MIC)的检测结果

将LATP加入各种培养皿中,针对各种细菌进行最小抑菌浓度(MIC)的检测并显示其结果。 参考:MIC是为了抑止细菌繁殖所需要的抗菌亮剂浓度的表示,数值越低表示其抗菌能力越高。

רלויכו ל				
检测用细菌	特。徵	MIC(ppm)		
大肠杆菌	作为食品污染的指标细菌。具有致病性的细菌还会导致食物中毒。	62.5		
金黄色葡萄球菌	毒素型食物中毒菌。是引发化脓原因的病菌。	125		
绿脓杆菌	在伤口的化脓部和食品中繁殖。对人和动物有致病能力。			
沙门氏菌	对人和动物有致病能力,是导致伤寒、食物中毒、肠炎的原因。	125		
蜡状芽孢杆菌	在土土壤、尘埃、水中等广范围中存在。由于食品腐败而引起食物中毒。	125		
酵母菌	用于食品发酵的酵母。 125			
假丝酵母菌	致病性的酵母可以让人引发念珠菌病。	250		
黑曲菌	引发过敏性疾病等的致病性菌。是果实、面包等食品上产生菌类的代表。	1000		
青霉属 (青变菌)	露菌病菌。可导致人体感染真菌过敏性疾病。	125		

◆ 試实验液体中实验菌的存活细菌数的测定结果。 (保存温度:25℃)


* 使用抗菌块

实验菌	区分	存活细菌数 (/ ml)				
		开始时	1小时后	3小时后	8小时后	24小时后
假单胞菌	实验液	5.6×10 ⁴	-	-	-	0
	对比		-	-	-	1.1×10^5
军团杆菌	实验液	***	1.2×10^{5}	3.6×10^{2}	< 10	< 10
	对比	2.1×10^{6}	1.3×10^6	9.1×10^{5}	1.0×10^6	3.5×10^{5}

使抗菌药与假单胞菌接触后,所有细菌在8和24小时后被杀死。我们已经确认了很高的抗菌性能。

◆ 防止金属加工用水溶性切削液的腐蚀

* 使用抗菌块

对腐烂细菌的抗菌作用(在1/24处安装抗菌剂后,细菌数大大减少)

◆ 安全

测试项目	结果汇总			
急性毒性 (小鼠)	口服给药的最低致死剂量为5000 mg / kg或更高,它的毒性极低。			
致突变性 (微生物)	阴性			
初级皮肤刺激性试验 (兔子)	阴性 (在应用部位未观察到红斑,浮肿,不烦人)			
皮肤毒性 (大鼠)	经皮给药时,最低致死剂量为2000 mg / kg或更高,它的毒性极低。			

※产品规格如有变更, 恕不另行通知。